ACADEMIC SUCCESS: ARE VIRTUAL HIGH SCHOOLS WORKING IN GEORGIA?

By

Stacy S. Kenyon

A Dissertation Presented in Partial Fulfillment
Of the Requirements for the Degree
Doctor of Philosophy

Capella University
March 2007
ACADEMIC SUCCESS: ARE VIRTUAL HIGH SCHOOLS WORKING IN GEORGIA?

by

Stacy S. Kenyon

has been approved

March 2007

APPROVED:

CAROLYN ROGERS, Ph.D., Faculty Mentor and Chair

DOUGLAS DEWITT, Ph.D., Committee Member

CHARLES GAUSE, Ph.D., Committee Member

ACCEPTED AND SIGNED:

__
CAROLYN ROGERS, Ph.D.

__
Harry McLenighan, Ed.D.
Interim Dean, School of Education
Abstract

It is not known how academically successful students in secondary schools, grades 9-12, will be in online instruction. In the rush to develop virtual schools at the secondary level, time has not been spent to see if these schools will be acceptable for the success of the students at this level (Pennington, 2005). The main question for this research paper is, “Are students in virtual secondary schools in Georgia as academically successful as students in traditional brick and mortar schools?” In order to answer this, the following questions will be answered to get a comprehensive look at this question: What is a comprehensive set of success indicators for a secondary school, that combine quality indicators for both traditional and virtual schooling from the perspective of both providers and consumers? From the comprehensive set, which indicators are practical in terms of data gathering and relevant to the outcomes of the study? Using the indicators selected for this study, what benchmarks emerge from the research? How do the success indicators compare between traditional and virtual secondary schools?

A quantitative method will be used in which statistical data will be gained from different educational sources around the state of Georgia, both traditional and virtual in order to make comparisons of success rates on indicators of achievement. This research will determine that virtual secondary schools in the state of Georgia are performing at or above brick and mortar schools in terms of students’ success rates on specific benchmark data for the state of Georgia.
Acknowledgements

There are so many people that have helped me through this process and I cannot even begin to
thank you all, but know that I will always be grateful.

To Dr. Carolyn Rogers, who kept me going even when I wanted to give up!

To my parents, Jack and Linda Spencer, who have always been 100% behind anything I wanted
to do. I am so lucky to be your daughter! Thanks for your thoughts, your prayers, your resources
and your encouragement. You are the best!!

To my wonderful boys: Drew, Tyler and Spencer. I know this took a lot of time and took me
away from playing with you, but know that I love you and you are ALWAYS first in my life!

To my loving and understanding husband, Rob, you have never asked me to stop doing what I
love and for that I will love you forever!
Table of Contents

Acknowledgments iii
List of Tables vii
List of Figures x

CHAPTER 1: INTRODUCTION 1
Introduction to the Problem 1
Background of the Study 5
Statement of the Problem 6
Purpose of the Study 7
Rationale 7
Research Questions 8
Significance of the Study 8
Definition of Terms 10
Assumptions 11
Limitations 12
Nature of the Study 13
Organization of the Remainder of the Study 14

CHAPTER 2: LITERATURE REVIEW 15
Histories of Traditional and Virtual Education 15
Why Secondary Virtual Schools? 24
Elements of Effective Virtual Education Programs 27
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assessing Success in a Virtual School</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Teaching and Learning in Virtual Education</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 3: METHODOLOGY</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Statement of the Problem</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Research Questions</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Theoretical Paradigm</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Research Design</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Population</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Validity</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Reliability</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Data Collection Procedures</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Data Analysis Procedures</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 4: DATA ANALYSIS</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Background Information</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Research Questions One</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Research Question Two</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Research Question Three</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>105</td>
</tr>
</tbody>
</table>
CHAPTER 5: CONCLUSIONS

Introduction 107
Summary 107
Findings for Research Questions 108
 Research Question One 108
 Research Question Two/Three 113
 Research Question Four 115
Recommendations for Further Research 116
Conclusions 119

REFERENCES 120

APPENDIX A: State of Georgia Virtual Schools 125
APPENDIX B: Regions of the United States Virtual Schools 127
List of Tables

Table 1 Behavioral Psychology verses Cognitive Psychology 28

Table 2 Percentage of Students Meeting or Exceeding Standards (EOCT) 71

Table 3 Binomial Test for Ninth Grade Literature and Composition (EOCT–Winter 2005) 72

Table 4 Binomial Test for American Literature and Composition (ECOT–Winter 2005) 73

Table 5 Binomial Test for Biology (ECOT–Winter 2005) 73

Table 6 Binomial Test for Physical Sciences (ECO –Winter 2005) 74

Table 7 Binomial Test for U.S. History (ECOT –Winter 2005) 75

Table 8 Binomial Test for Economics (ECOT – Winter 2005) 75

Table 9 Binomial Test for Algebra 1 (ECOT –Winter 2005) 76

Table 10 Binomial Test for Geometry (ECOT –Winter 2005) 77

Table 11 Binomial Test for Ninth Grade Literature and Composition (ECOT – Spring 2006) 79

Table 12 Binomial Test for American Literature and Composition (ECOT – Spring 2006) 80

Table 13 Binomial Test for Biology (ECOT –Spring 2006) 80

Table 14 Binomial Test for Physical Science (ECOT –Spring 2006) 81

Table 15 Binomial Test for U.S. History (ECOT –Spring 2006) 82

Table 16 Binomial Test for Economics (ECOT –Spring 2006) 83

Table 17 Binomial Test for Algebra 1 (ECOT –Spring 2006) 83

Table 18 Binomial Test for Geometry (ECOT –Spring 2006) 84
Table 19 Percentage of Students Meeting by Category, Subject and Group (Gateway) 86
Table 20 Binomial Test for Fail Category in Social Studies (Gateway) 87
Table 21 Binomial Test for Minimal Category in Social Studies (Gateway) 87
Table 22 Binomial Test for Effective Category in Social Studies (Gateway) 88
Table 23 Binomial Test for Fail Category in Science (Gateway) 88
Table 24 Binomial Test for Minimal Category in Science (Gateway) 89
Table 25 Binomial Test for Effective Category in Science (Gateway) 90
Table 26 Binomial Test for Fail Category in Language Arts 1 (Gateway) 90
Table 27 Binomial Test for Minimal Category in Language Arts 1 (Gateway) 91
Table 28 Binomial Test for Effective Category in Language Arts 1 (Gateway) 91
Table 29 Binomial Test for Fail Category in Language Arts 2 (Gateway) 92
Table 30 Binomial Test for Minimal Category in Language Arts 2 (Gateway) 92
Table 31 Binomial Test for Effective Category in Language Arts 2 (Gateway) 93
Table 32 Percentage of Students Passing by AP Course and Group 94
Table 33 Binomial Test for AP Psychology 95
Table 34 Binomial Test for AP World History 95
Table 35 Binomial Test for AP U.S History 96
Table 36 Binomial Test for AP European History 96
Table 37 Binomial Test for AP Human Geography 97
Table 38 Binomial Test for AP Chemistry 97
Table 39 Binomial Test for AP Biology 98
Table 40 Binomial Test for AP Environmental Science 98
Table 41 Binomial Test for AP Statistics 99
Table 42 Binomial Test for AP Calculus 99
Table 43 Binomial Test for AP Physics 100
Table 44 Winter 2005 EOCT Passing Percentages of Schools 109
Table 45 Spring 2006 EOCT Passing Percentages by Schools 110
Table 46 Percentages of Passing Scores Gateway 2006 111
Table 47 Percentages of Passing Advanced Placement Exams 2006 112
List of Figures

Figure 1 Proportion of Students Meeting or Exceeding Standards by Subject and School (EOCT – Winter 2005) 78

Figure 2 Proportion of Students Meeting or Exceeding Standards by Subject and School (EOCT – Spring 2006) 85

Figure 3 AP Percent Passing by Course and Group 101

Figure 4 EOCT Growth From Winter 2005 to Spring 2006 103
CHAPTER 1. INTRODUCTION

Introduction to the Problem

Virtual secondary schools are becoming increasingly popular as the 21st century gets into full swing. Colleges and universities have been offering classes via computer for the last decade; however secondary virtual schools are much newer. “The concept of the virtual high school, in which secondary school students have access to courses online, is fast becoming a widespread reality” (p. 1). According to Winograd (2002), 14 states have a planned or operational state-sanctioned, state-level virtual school in place. Winograd estimates that 40,000 to 50,000 K-12 students will become "virtual" in the next year. Online learning holds promise for providing new educational opportunities to a wide range of students across the county. The rapid development of K-12 online learning, however, threatens to outpace the development of appropriate state level policies that serve to fulfill the promise (Watson, Winograd & Kalmon, 2004). According to the National Association of State Boards of Education, “in the absence of firms policy guidance, the nation is rushing pell-mell toward an ad hoc system of education that exacerbates existing disparities and cannot assure a high standard of education across new models of instruction” (National Association of State Boards of Education, p. 6). There is much information about the academic success rates of college students in online classes. According to Raine: Ten months after the California Virtual University popped up on the World Wide Web, making the audacious claim it could link students worldwide with unrivaled educational opportunities, CVU looks like the team to beat. In the past six months, CVU has more than doubled the number of courses available electronically, for a total of 1,600. At launch time, 65 accredited California colleges and universities appeared in the CVU catalog. Now, there are 95 (Raine, 1998).
however, limited information about the academic success of secondary students in the virtual classroom. Are high school students responsible enough for a virtual experience? What do we know about the effectiveness of electronic-schooling? How do student performance, satisfaction rates, cost-effectiveness, and funding in the virtual environment compare with conventional schools?

The United States public and private educational system is undergoing sweeping changes as society has launched into the twenty-first century. The demands of educating all students for their future as citizens and workers in the new economy present enormous challenges to American schools and educators. In this environment of change and innovation, schools have begun to use information and communications technologies, including the Internet. On-line schools have become the new frontier. Since 1995, virtual schooling experiments from K-12 have sprung up across America, enrolling increasing numbers of students. “The Peak Group, an education technology research and consulting firm, expects that more than 1 million students will take advantage of "virtual schools" this school year. Another research firm, Eduventures, predicted the online distance learning market will grow more than 38 percent in 2004, taking in $5.1 billion in revenue,” (Botelho, p. 1).

The Internet has revolutionized all facets of our society, including education. By 2004, 91% of public schools had Internet access in one or more classrooms, and 77% reported that at least half of their teachers used the Internet for instruction. During the 2002–03 school year, 36% of public school districts enrolled a total of more than 328,000 students in technology-based distance education courses. Most reviews of education trends show a dramatic increase in both
the capacity and use of technology in our schools. In fact, at least 22 states had established “virtual” schools by the 2004–05 school year (Distance Education Courses, 2004).

Online learning continues to grow rapidly across the country as an increasing number of educators and policymakers recognize the benefits of learning unconstrained by time and place. As of September 2006, 38 states have either state-led online learning programs, Significant policies regulating online education, or both. In the past year, numerous states have added new state-led programs or passed online learning laws, including Missouri, South Carolina, South Dakota, and Nebraska. Growth of the number of students in many existing programs has been sustained, with Louisiana Virtual School growing by 18%, Virtual High School by 24%, Florida Virtual School and Idaho Digital Learning Academy by over 50%, and Ohio’s eCommunity Schools collectively by 22%. (Watson & Ryan, p. 7)

As of September 2006 there are:

1. 24 states with state-led online education programs
2. 26 states with significant state policies for online learning
3. 12 states with neither a state-led program nor significant state policies

Another way to look at the data is:

1. 12 states have state-led online education programs and significant state policies that govern district-level online programs or cyberschools.
2. 12 states have state-led programs but no significant state-level policies that govern district-level online programs or cyberschools.
3. 14 states have significant state-level policies that govern district-level online programs or
cyber schools but no state-led programs.

4. 12 states have neither a state-led program nor state policies.

5. Numerous states created new state-led programs and/or passed significant new laws in late 2005 or 2006. These include:
 a. Michigan passed a law creating an online learning experience requirement for high school graduation.
 b. Georgia passed a law allowing cyber charter schools.
 c. North Carolina created the North Carolina Virtual Public School.
 d. Missouri passed a law to create a new state-led program to open Fall 2007 that will include both full-time and part-time students in grades K-12.
 e. Washington issued guidelines for its “alternative learning experience” policies, which govern most online learning programs in the state (Watson & Ryan, p. 9).

The latest study (Mehta, 2007) done in the final months of 2006, show that 1 million kindergarten through high school students enrolled in virtual schooling across the nation and are others involved in online schooling in 2006. Enrollment, counted as the total number of seats in all online classes, not the number of students, has “grown twenty-fold in seven years”, and the group National Center for Online Learning expects this number to “continue to jump 30% annually (Mehta, p. 1)”.

Nearly half the states in America offer public school classes online, and last year Michigan became the first to require students to take an online course to graduate from high school. In California, a state senator introduced a bill last month to allow public high school
students to take online classes without depriving schools of the state funding they receive for attendance (Mehta, 2007).

Online learning "is going to reinvent high school in the United States," said Ken Ellwein, executive director of the Lutheran high school, which created its online school last year. "To keep technology away from kids while they're going to school, when they have it in every other part of their lives -- it just doesn't make sense (Mehta, p. 2)."

"It's not a matter of intellect or aptitude. The most important factor (for students taking online courses) would be the desire," said Patty Young, director of Orange Lutheran Online. "Students today really want a customized education. Why should school be confined to an old-style box with a daily schedule?" Other parts of the nation have a head start on virtual schooling, with 24 states running online schools. Nearly 30,000 students take classes at Florida Virtual School, which has a $43 million annual budget and, at nearly a decade old, is the nation's oldest and largest statewide online public school. "Many states are realizing the world is moving in this direction, and we need to prepare kids to be able to work and exist in this type of environment," said Julie Young, co-founder of the Florida school (Mehta, 2007).

In this context, there is a need for in-depth research examining this bold new learning adventure to discover its potential and pitfalls and provide guidance for future developments in this field.

Background of the Study

Georgia's Governor Sonny Perdue passed a plan focused on online learning to expand the state's virtual high school program in May 2005. The legislation created the Georgia Virtual High School, an internet-based public high school housed in the Georgia Department of
Education (DOE) that will give students in any region of the state access to Advanced-Placement (AP) courses, summer school courses, and other advanced science and math courses. Georgia already offers online courses to about 570 students statewide through partnerships with teachers working in the metro that offer online learning. But the state has reached its limit and can't expand that program (Pennington, 2005).

The start-up of the Georgia Virtual High School is expected to cost almost $2 million. The Georgia Department of Education has more than 60 virtual high school courses prepared for the fall 2005 program launch, including more than ten Advanced Placement (AP) courses. According to state officials, space will be provided for 2,000 students to take courses with the Georgia Virtual School. These would be students taking one class each as a part of their regular school day. If students want to take additional courses or summer school courses, then a nominal fee will be charged, as is the case with additional coursework offered by public schools. Students taking a course from the Georgia Virtual High School will work with a fully certified and highly qualified teacher via email and telephone. The virtual courses will count as a class credit toward graduation, but the virtual school will not grant diplomas. Legislators and education leaders believe that the Virtual High School will be especially beneficial to students in rural communities who might not otherwise have access to courses they need for either college or workforce preparation (Pennington, 2005).

Statement of the Problem

It is not known how academically successful students in secondary schools, grades 9-12, will be in online instruction. In the rush to develop virtual schools at the secondary level, time has not been spent to see if these schools will be acceptable for the success of the students at this
level. There is a variety of research that has been completed at the postsecondary level of education that has shown equal or greater success levels of students in the brick and mortar schools as well as the virtual schools. “Our institution has not only been successful but a leader in bringing about distributive learning for the citizens of Kansas. We offer more mediated credit hours through our Virtual College than any other institution in the state of Kansas” (Hammond, p. 1).

The secondary virtual schools have been using this data in general terms to prove that the secondary virtual schools will be successful as well. As most people will attest, however, there is a great difference between the high school student and the college student in terms of maturity, knowledge, skills and educational attainment (Watson et al., 2004). The Georgia Virtual School has just been approved by law to be a school unto its own. The people in charge of this new school are confident that students will be successful in this educational milieu; however, statistical data is needed to be sure of this (Watson et al., 2004).

Purpose of the Study

The purpose of the study is to examine the effectiveness of virtual secondary schools and virtual secondary schooling in the state of Georgia, especially as they compare to regular or conventional secondary schools and secondary schooling in the state of Georgia. The primary outcomes of the study are benchmarks for the continued study of virtual schools, and issues for policy makers to consider in the further development of virtual education.

Rationale

The rationale behind this study is to get statistical data to show that virtual secondary schools in the state of Georgia are performing at or above brick and mortar schools in terms of
students’ success rates. These success rates will be based on completion rates as well as benchmark state tests scores (End of Course Exams, Gateway tests and AP Exams). This information is necessary for the virtual schools in the state of Georgia as well as virtual schools throughout the United States. Virtual schooling is becoming the educational craze in America (Raham, 2000). Before we tell our students to go out and get involved, we need to be able to tell the parents that this education is right for their children.

Research Questions

The main question for this research paper is, “Are students in virtual secondary schools in Georgia as academically successful as students in traditional brick and mortar schools?” In order to answer this, the following questions will be answered to get a comprehensive look at this question:

1. What is a comprehensive set of success indicators for a secondary school, that combine quality indicators for both traditional and virtual schooling from the perspective of both providers and consumers?
2. From the comprehensive set, which indicators are practical in terms of data gathering and relevant to the outcomes of the study?
3. Using the indicators selected for this study, what benchmarks emerge from the research?
4. How do the success indicators compare between traditional and virtual secondary schools?

Significance of the Study

“The internet is perhaps the most transformative technology in history, reshaping business, media, entertainment and society in astonishing ways. But for all its power it is just

8
now being tapped to transform education” (Web-Based Education Commission, 2000, p. 1).

What is so appealing to educators and legislators alike is the way that the internet can solve so many problems we are facing right now. These problems include a shortage of teachers, getting a highly qualified education to all students regardless of race, socioeconomic status, religion, size of school and community, etc. One of Georgia’s initiatives in the next year is to provide all schools in the state with Advanced Placement courses (Watson et al., 2004). This is not possible in the brick and mortar classroom due to lack of funding and lack of qualified teachers. Through the virtual classroom, anyone can take any class, anywhere.

Carr and Young (1999) have expressed some concerns over online education at the secondary level. “Virtual high school programs are so new that little has been done to assess the quality and effectiveness of their courses. Some observers worry that fly-by-night operations will emerge and try to peddle inferior courses to unsuspecting high school students” (p. 1). This could happen if teachers and programs are not evaluated and assessed in these arenas. We must have valid and reliable data on these programs as they are put into the new educational system through the World Wide Web.

These issues bring up questions that will be answered throughout this research. In the quantitative analysis that will be done, attempts will be made to show that Georgia’s virtual schools will not only be successful as far as student achievement rates, but also be equal or better than the traditional brick and mortar school in success rates of tests found across the state of Georgia.
Definition of Terms

The terminology in this research is varied and many of the words need to be defined in order for the reader to fully understand the content of this paper. The major definitions for the information in this paper are:

1. A Virtual School is one that offers the mandated provincial instructional program to students only through electronic means (i.e., computer-mediated and on-line via the Internet). A virtual school is characterized by a structured learning environment in which the program is under the complete supervision of a teacher or teachers; electronic delivery to students who are at home or in a physical setting other than that of a teacher; and instruction that may be synchronous or asynchronous (Barker, 2000).

2. Virtual Schooling meets the same criteria identified above, but the program is more limited in scope (i.e., not an entire program). It is an optional enhancement to a school’s regular, face-to-face programming for access and choice purposes.

3. A "Regular" or Conventional School is characterized by face-to-face instruction; required attendance; group instruction, assignments and testing; and technology being used as an adjunct to instruction (Barker, 2000).

4. Effectiveness, for purposes of this study, has been derived from the literature on school effectiveness (i.e., the degree to which the school is able to meet the differing and various expectations of both providers and users or clients). The school effectiveness literature has differing opinions on what actually qualifies as an effective school (Wyatt, 1996). However, this has been enhanced with the quality literature in distance education, on-line learning in particular and learning technologies in general (Paloff & Pratt, 2003).